“雾计算”是一种面向物联网(IoT)的分布式计算基础设施,可将计算能力和数据分析应用扩展至网络“边缘”,它使客户能够在本地分析和管理数据,从而通过联接获得即时的见解。
最初“雾计算”这个名字还是由美国纽约哥伦比亚大学的斯特尔佛教授(Prof. Stolfo)起的,不过他当时的目的是利用“雾”来阻挡黑客入侵。显然,这与我们现在所讲的“雾计算”有着巨大的差距。
我们现在所熟知的“雾计算”这个概念是由思科首创,到了2015年11月,ARM、戴尔、英特尔、微软等几大科技公司以及普林斯顿大学加入了这个概念阵营,并成立了非盈利性组织OpenFog Consortium (开放雾联盟),旨在推广和加快开放雾计算的普及,促进物联网发展。
根据Cisco对于“雾计算”的定义,“雾计算”是一种面向物联网(IoT)的分布式计算基础设施,可将计算能力和数据分析应用扩展至网络“边缘”,它使客户能够在本地分析和管理数据,从而通过联接获得即时的见解。
根据定义,我们了解到,“雾计算”是一种对“云计算”概念的延伸,而它主要使用的是边缘网络中的设备,这些设备可以是传统网络设备(早已部署在网络中的路由器、交换机、网关等等),也可以是专门部署的本地服务器。
对于“云计算”与“雾计算”的本质区别,有一句话形容的非常贴切:云在天空飘浮,高高在上,遥不可及,刻意抽象;而雾却现实可及,贴近地面,就在你我身边。
说到“雾计算”的优势,那就不得不先提一下“云计算”的缺陷。集中式的“云计算”允许人们高效、廉价地分享昂贵服务器资源,减轻企业用户的负担。但是,这也意味着每一个人都在共享一个数据中心,要想进行更高效的运用,企业就需要建设超大型数据中心,而这就要求企业购买造价高昂的服务器。此外,“云计算”对服务器的高要求也给服务提供商造成了很大的压力。而且,随着依赖云计算的智能设备越来越多的出现,从云端到移动设备的数据传输也变得越来越拥挤,从而引发了一个新问题。
这时,分布式的“雾计算”的出现就弥补了集中式计算在这方面问题的不足。因为“雾计算”在地理上分布更为广泛,而且具有更大范围的移动性,这些能够让它适应如今越来越多不需要进行大量运算的智能设备,在数据传输速度上远胜“云计算”。
而具体来讲,“雾计算”主要有以下几个优势:
极低时延。这对于目前正在蓬勃发展中的物联网有着十分重要的意义,除此之外,网上游戏、视频传输、增强现实等也都需要极低的时延。
辽阔的地理分布。这正好与集中在某个地点的云计算(数据中心)形成强烈的对比。例如,如果需把信息和视频发送到高速移动的汽车时,可以沿着高速公路一路上设置无线接入点。此外,一旦某一区域的服务发生异常,用户也可快速的转移到另一个邻近区域。
带有大量网络节点的大规模传感器网络,用来监控环境。智能电网本身就是一种带有计算和存储资源的大规模分布式网络,可以作为“雾计算”很好的应用例子。
支持高移动性。对于雾计算来说,手机和其他移动设备可以互相之间直接通信,信号不必到云端甚至基站去绕一圈,因此可以支持很高的移动性。
在“雾计算”这个概念出来的时候,许多人都说这是一种炒作,但事实并不是如此。“雾计算”只是对“云计算”的一种延伸,并不是对“云计算”的一个取代。
在功能上面,“雾计算”相当于一个可以频繁使用的“数据库”,而“云计算”就是一个用于长期存储文件的“文件室”。在搜寻信息方面,不管是速度,还是利用率,数据库明显比文件室具有更大的优势。而在数据丰富方面,“雾计算”也可以从“云计算”平台进行获取,相信在数据分享终端减少之后,“云计算”平台的数据传输速度相比于之前应该快乐许多。基于此,“云”与“雾”可以说是一种相辅相成的关系。
此外,云计算的使用需要大量带宽,而无线网络带宽有限。相比之下“雾计算”所需的带宽量就少得多了,它在原则上可使传输的数据“旁路”,即从互联网边上绕过去,使这些数据尽可能本地化。最有价值的数据仍然可以通过“云计算”平台来传输,但是大部分的数据流量可以从这些网络中分流出去,从而大大减轻了云网络的流量负担。另外,对本地数据的使用也可节省大量成本。
雾计算的概念在2011年被人提出,并非是些性能强大的服务器,而是由性能较弱、更为分散的各种功能计算机组成,渗入电器、工厂、汽车、街灯及人们生活中的各种物品。雾计算是介于云计算和个人计算之间的,是半虚拟化的服务计算架构模型,强调数量,不管单个计算节点能力多么弱都要发挥作用。
雾计算有几个明显特征:低延时、位置感知、广泛的地理分布、适应移动性的应用,支持更多的边缘节点。这些特征使得移动业务部署更加方便,满足更广泛的节点接入。
与云计算相比,雾计算所采用的架构更呈分布式,更接近网络边缘。雾计算将数据、数据处理和应用程序集中在网络边缘的设备中,而不像云计算那样将它们几乎全部保存在云中。数据的存储及处理更依赖本地设备,而非服务器。所以,云计算是新一代的集中式计算,而雾计算是新一代的分布式计算,符合互联网的"去中心化"特征。
以智能交通灯为例。智能交通灯需要对车流量信息进行采集、并与一些传感器不断交互,进行计算并实时做出判断,改变信号灯变换周期和时序,从而实现自动指挥交通。如果将信息传到云计算中心计算后再回传,显然不及时且可能出错,而雾计算则可为智能交通灯提供就近的实时计算。相关数据聚合之后再发送到云计算中心做进一步的全景和长期的数据分析。
对于“雾计算”也有质疑的声音。认为这是一种炒作,还有人提出了“霾计算”。但是不可否认雾计算在产业界和学术界都受到了重视。
Business Insider的优质搜索服务“BI智能”预测,在2020年,企业和政府将有58亿个物联网设备会使用雾计算。思科已经发布了多款与雾计算相关路由器、存储等物联网和网络产品,投资混合数据中心和雾计算;推出基于雾计算的物联网应用管理模块、万物互联软件及服务套件,实现数据的实时获取和处理。安谋国际、思科、戴尔、英特尔、微软及普林斯顿大学边缘实验室共同成立雾计算联盟,该联盟探索建立雾计算框架和架构,研究分散式运算、网络和存储及物联网等相关技术,加速雾计算应用。
在云计算架构中,集中式服务器负责整个应用程序或设备所需的计算。然而,与物联网生态系统遵循同样的原则变得越来越麻烦。物联网的生态系统可以分解为四个组成部分:数据、东西、人和过程。在数据层面,我们意识到,尽管庞大的数据量正在从连接的设备产生,大部分数据是暂时性的,即数据的价值产生后几分钟内就消失了。因此,处理这些数据,从数据中提取的价值,数据的生产和存储的各种分析需求是完全不同的学科。
处理